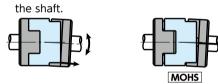
MOHS Cleanroom / Vacuum / Heat Resistant Coupling - Oldham - Type (VESPEL)

Structure

Application


FPD manufacturing device/Semiconductor manufacturing device

 Material/Finish 	🗭 RoHS2 Compliant
	MOHS-C
Hub	SUS303
Spacer	VESPEL*1
Hex Socket Head Cap Screw	SUSXM7 Molybdenum Disulfide Coating

*1: VESPEL is a registered trademark of U.S. company DuPont.

• The color may vary depending on the lot or other matters.

• Spacer's projection structure Spacer's projection structure allows large angular to be effortlessly accepted. It reduces burden on

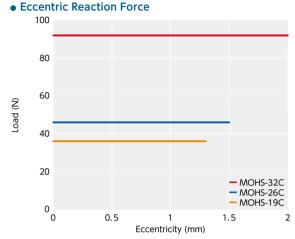
(With projection) (Without projection) In the Oldham-type coupling whose spacer has no projection, the spacer and hubs interfere with each other near outside diameter, so that the max. angular misalignment is small $(1^{\circ} - 1.5^{\circ})$ and that the bending moment arises on the shaft.

NBK's oldham type coupling allows the angular misalignment to be easily accepted since the projection serves as support. Bending moment does not arise. Therefore, the max. angular misalignment is large (2°) and the burden on the shaft is reduced.

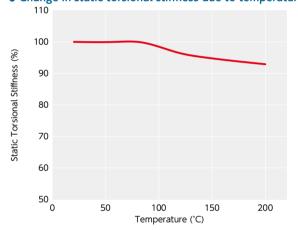
_	
 Property 	

	MOHS
Low Particle	
Vacuum-supported	0
Low Outgas	0
Heat-resistance	0
Chemical Resistance	0
Allowable Misalignment	0
Electrical Insulation	0
Cleanroom Specification	0
Allowable Operating Temperature	−20℃ to 200℃

O: Excellent O: Very good


- \triangle : Abrasion powder may be produced • This is an oldham-type flexible coupling.
- Clean washing and clean packaging are completed. It can be used in an environment or cleanroom where heat resistance and chemical resistance are required, such as FPD manufacturing device.
- VESPEL SPC5000 is adopted in the spacer. This is superior in heat resistance and chemical resistance, and the amount of outgas at high temperature is ultralow.
- Slippage of hubs and a spacer allows eccentricity and angular misalignment to be accepted.
- The load on the shaft generated by misalignment is small and the burden on the shaft is reduced.

• Part number specification


MOHS-19C-6-6 Product Size bore diameter Please refer to dimensional table for part number specification.

• Additional Keyway at Shaft Hole \rightarrow P.803 Scleanroom Wash & Packaging \rightarrow P.807 Change to Stainless Steel Screw - P.805 Available / Add'l charge Cleanroom washed and packed Changed to the S.S. screw

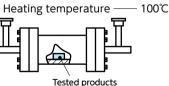
Technical Information

• Change in static torsional stiffness due to temperature

	· Anatysis of outg	Unit : (v/v ppm)	
	Component		Content
		Hydrogen	500 or less
	Inorganic gas	Carbon monoxide	500 or less
		Carbon dioxide	500 or less
Organic gas		Methane	5 or less
		Ethane	5 or less
		Ethylene	5 or less
	Organic gas	Propane	5 or less
	Organic gas	Acetylene	5 or less
		i-butane	5 or less
		n-butane	5 or less
		Propylene	5 or less

Analysis of outgas

• Both inorganic gas and organic gas are not more than the lower limit of determined amount and are not detected.


These are initial slippage load values of hubs and a spacer.

After running-in operation, the slippage load becomes small, the load on the shaft due to misalignment becomes lowered, and the burden on the shaft bearing is reduced.

This is a value under the condition where the static torsional stiffness at 20°C is 100%. The change of **MOHS** in torsional stiffness due to temperature is small and the change in responsiveness is extremely small. However, if the unit is used at higher temperature, be careful about misalignment due to elongation or deflection of the shaft associated with thermal expansion.

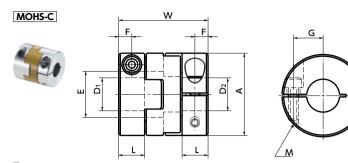
Measurement Methods

- Inorganic gas ——— Gas chromatography (TCD) Organic gas ——— Gas chromatography (FID)
- Measurement Conditions

Technical Information VESPEL's physical property

Property	Test Method	Unit	VESPEL
Tensile Strength	D1708	N/mm ²	160
Tensile elongation	D1708	%	7
Bending Strength	D790	N/mm ²	247
Bending elastic modulus	D790	GPa	5.7
Izod impact value (with notch)	D256	J/m	-
Rockwell hardness	D785	R / M Scale	M100
Deflection Temperature Under Load (1.82MPa)	D648	°C	350
Combustibility	UL94	-	V-0
Dielectric Constant (10 ⁶ Hz)	D150	-	3.3
Dielectric loss tangent (10 ⁶ Hz)	D150	-	0.001
Volume resistivity (x10 ¹⁴)	D257	Ω·m	1
Insulation Breakdown Strength	D149	MV/m	-
Specific gravity	D792	-	1.43
Water absorption (in 23℃ water x 24 h)	D570	%	0.08
Content by percentage of glass fiber	-	%	-

• VESPEL's chemical resistance


Broporty	VESPEL
Property	VESPEL
10% hydrochloric acid	0
10% sulfuric acid	0
50% sulfuric acid	
10% nitric acid	
50% nitric acid	×
10% hydrofluoric acid	
50% hydrofluoric acid	×
Formic acid	
10% acetic acid	0
Citric acid	0
Boric acid	0
Methyl alcohol	
Glycol	0
Ammonia	

O: Available riangle: Fair pending on condition

×: Not available

• This is test data with a specimen used at room temperature (23°C). The chemical resistance varies depending on the usage conditions. Be sure to perform a test under the same usage conditions as in actual usage in advance. MOHS-C Cleanroom / Vacuum / Heat Resistant Coupling - Oldham Type (VESPEL) - Clamping Type

🕎 Selection 🕎 CAD Selection K Cleanroom × Electrical Insulation 🔥 Heat-resistance 🕹 Chemical-proof 🚓

Dimensions								
Part Number 🜗	A	L	w	E	F	G	м	Screw Tightening Torque (N•m)
MOHS-19C	19	7	22.1	10	3.5	6.5	M2.5	0.5
MOHS-26C	25.4	8	27.2	14	4	9	M3	0.7
MOHS-32C	31.7	10	33.3	18	5	11	M4	1.2

Part Number	Standard Bore D D1 • D2 • 2	Diameter					
	5	6	8	10	11	12	14
MOHS-19C	•	•	•				
MOHS-26C			•	•			
MOHS-32C			•	•	•	•	•

Performance

Part Number	Max. Bore Diameter (mm)	Rated*1 torque (N∙m)	Max.* ¹ torque (N•m)	Max. Rotational Frequency (min ⁻¹)	Moment* ² of Inertia (kg•m ²)	Static Torsional Stiffness (N∙m/rad)	Max. Lateral Misalignment (mm)	Max. Angular Misalignment (°)	Mass*2 (g)
MOHS-19C	8	0.4	0.8	900	1.4×10 ⁻⁶	160	1.3	2	28
MOHS-26C	10	1.2	2.4	900	5.5×10 ⁻⁶	220	1.5	2	61
MOHS-32C	14	2.2	4.4	900	1.6×10 ⁻⁵	600	2	2	110

*1: Correction of rated torque and max. torque due to load fluctuation is not required.

*2: These are values with max. bore diameter.

• All products are provided with hex socket head cap screw.

• Recommended dimensional allowances of applicable shaft diameter are h6 and h7.

• In case of mounting on D-cut shaft, be careful about the position of the D-cut surface of the shaft. \Rightarrow P.258

Part number specification MOHS-32C - 10-12 (1 set) MOHS - SPCR (Single Spacer) Single Spacer

 O Additional Keyway at Shaft Hole → P.803
 Steel Screw → P.805

 Available / Add'l charge
 Cleanroom Wash & Packaging → P.807

 Cleanroom washed and packed
 Changed to the S.S. screw