

# **Encoder Lika & Missione Rosetta**





#### Lika Electronic, rotta verso lo spazio

#### Sonda sperimentale ROSETTA: una storia lunga più di 12 anni!

Rosetta è stata la missione dell'ESA (Agenzia Spaziale Europea) che ha coinvolto un consorzio di oltre 50 contractor (aziende private, istituti di ricerca e università) in Europa e negli Stati Uniti. Si è trattato di un progetto unico, conclusosi nel settembre 2016, che per la prima volta si è posto l'obiettivo di portare una sonda nell'orbita di una cometa e fare atterrare un lander sulla sua superficie. La sonda Rosetta (fig. 1) è decollata dalla base di lancio di Kourou nella Guyana Francese il 2 marzo 2004, portata in orbita dal vettore Ariane 5. Ha finalmente raggiunto il suo obiettivo, la cometa 67P/Churyumov-Gerasimenko, ad agosto 2014 dopo un viaggio di oltre 10 anni e una serie di manovre di gravity assist per fornire la necessaria energia orbitale, tre flyby della terra (marzo 2005, novembre 2007 e novembre 2009; vedi fig. 2) e uno di Marte (febbraio 2007). Nel corso del suo viaggio la sonda ha incontrato prima l'asteroide 2867 Steins (settembre 2008), poi l'asteroide 21 Lutetia (luglio 2010). Rosetta recava a bordo 11 strumenti scientifici che sono stati utilizzati per lo studio della superficie della Cometa, l'esame dei materiali e l'analisi del nucleo.



Fig. 1 - Sonda Rosetta (per gentile concessione ESA © J. Huart)



Fig. 2 - Vista della Terra.

Dopo la fase di massimo avvicinamento alla Terra, Rosetta ha gettato uno sguardo all'indietro e scattato una serie di foto straordinarie utilizzando la fotocamera NAC di OSIRIS. Foto acquisita il 15/11/2007 alle 3:30 am CET (per gentile concessione ESA © 2005 MPS per team OSIRIS)

La missione prevedeva anche l'accometaggio del lander Philae, rilasciato il 12 novembre 2014. Purtroppo non tutto è andato per il verso giusto, il lander è rimbalzato più volte appoggiandosi poi malamente a ridosso di alcune rocce dove è rimasto al buio riducendo l'operatività.

Nel breve tempo di funzionamento ha comunque potuto prelevare campioni di materiale e gas, fondamentali per *acquisire informazioni sui processi fisici e chimici alla base della formazione dei pianeti, 4,6 miliardi di anni fa.* L'ultima tappa di questo viaggio si è realizzata alla fine del 2016. Dopo mesi di orbitaggio a poche centinaia di chilometri dalla cometa, il 30 settembre 2016 la sonda Rosetta è stata fatta scendere sul corpo paperoide di 67P, regalandoci altre immagini spettacolari e scientificamente uniche prima di schiantarsi, alle 11:19 UTC, sulla superficie della cometa, diventando così insieme al lander Philae "parte dell'Universo".

Tra gli strumenti di bordo c'era **OSIRIS**, il sistema di **imaging ottico remoto**, spettroscopico e a infrarossi. OSIRIS è stato l'occhio della cacciatrice di comete e lo strumento di acquisizione delle fotografie. Includeva una **fotocamera grandangolare (WAC)** e una **fotocamera zoom (NAC)** con lo scopo di riprendere immagini ad alta risoluzione durante il viaggio e poi della Cometa. La collaborazione di Lika con il **CISAS** (Centro Interdipartimentale di Studi e Attività Spaziali) dell'Università di Padova ha portato allo sviluppo e alla realizzazione di un encoder ad altissime performance e affidabilità per il controllo del movimento dei motori degli otturatori di WAC e NAC. Grazie a questo progetto **Lika Electronic è riconosciuta come la prima azienda italiana** e la seconda in Europa ad aver realizzato un encoder destinato ad applicazioni spaziali.

#### Encoder 138 SPACE



Fig. 3 - L'encoder l38 SPACE è costruito in titanio e monta cavi in Kapton. Il motore brushless è calettato sulla parte frontale

Fig. 4 - Blocco otturatore del sistema OSIRIS. Il meccanismo include due otturatori per la gestione del tempo di esposizione e la protezione delle fotocamere. Per gentile concessione CISAS Università di Padova.

Fig. 5 - Vista laterale del blocco otturatore. L'encoder è integrato nel motore brushless e installato sulla piastra di montaggio. Si nota il braccio dell'otturatore fissato direttamente sull'albero. Il movimento di apertura e chiusura richiede meno di 10 ms.

### L'encoder incrementale I38 SPACE era integrato nei motori brushless che azionavano i meccanismi dell'otturatore delle fotocamere WAC e NAC (fig. 4, 5).

Questo encoder si caratterizzava per l'estrema compattezza (Ø 38 mm, profondità 36 mm, peso 55 g) e i bassissimi consumi (max. 200 mW); aveva una risoluzione di 14.400 cpr e un'accuratezza superiore a  $\pm 10^{\circ}$  el.


138 era stato progettato per controllare i sofisticati movimenti dell'otturatore che richiedeva tempi di esposizione anche inferiori a 10 ms. Inoltre era realizzato per garantire un'affidabilità di funzionamento di almeno 500.000 cicli per una durata della missione prevista in oltre 12 anni.

A causa delle condizioni proibitive con ampie fluttuazioni di temperatura, basse pressioni e forti radiazioni, i materiali impiegati erano stati rigorosamente selezionati e assemblati senza uso di colle. Accanto alle problematiche tecniche, anche il contenimento dei costi aveva costituito un obiettivo primario: come hanno affermato i tecnici del CISAS "gli encoder di Lika si sono dimostrati cinque volte più economici di analoghi dispositivi realizzati da competitor specializzati in forniture spaziali". Questo progetto si è rivelato di fondamentale importanza ai fini della quotidiana esperienza e dei futuri obiettivi industriali di Lika ed è stato prova concreta della competenza tecnica e dell'ingegno tecnologico di un'azienda che sa guardare al futuro con spirito innovativo e globale.



Fig. 4 - Vista dall'alto

Fig. 5 - Vista laterale





#### 2 marzo 2004

Lancio della sonda ESA Rosetta da Kourou, Guyana Francese. 18 minuti dopo Rosetta viene sganciata nello spazio.

#### 25 febbraio 2007

Flyby di Marte. Le "fotocamere" OSIRIS equipaggiate con encoder Lika scattano spettacolari immagini del pianeta rosso.

#### 8 qiuqno 2011

Spegnimento della strumentazione di bordo. Ibernazione della sonda per 31 mesi.

#### 20 gennaio 2014

Risveglio della sonda dopo l'ibernazione nello spazio profondo.

#### Maggio-luglio 2014

Fase di approssimazione e inizio dell'attività di indagine più ravvicinata della cometa

#### Agosto-settembre 2014

Incontro con la cometa 67P/Churyumov-Gerasimenko. Rilevamento e studio della superficie mediante l'utilizzo delle fotocamere WAC e NAC di OSIRIS.

#### Novembre 2014

Il lander Philae si posa sul suolo della cometa. Prelievo di campioni e studio dei materiali e componenti chimici sulla superficie e nel sottosuolo della cometa.

#### 14 giugno 2015

Miracoloso risveglio di Philae, ma solo per pochi minuti

#### 13 agosto 2015

Perielio, massima vicinanza dell'orbita della sonda al Sole.

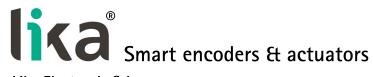
#### 30 settembre 2016, ore 11:19 UTC

lmnatto della sonda Rosetta sulla cometa e fine della missione

## → ROSETTA'S OSIRIS INSTRUMENT IN NUMBERS



#### MISSION: To image the comet's nucleus and its gas and dust coma


- > 98 219 images taken during entire mission
- > 76 308 images taken at comet
- > 150 225 shutter activations
- > 23 486 door operations
- > 129 000 filter/band pass changes
- > 115 497 telecommands sent
- > 22 176 hours of operation

OSIRIS¹ WAC²

OSIRIS NAC3

- <sup>1</sup> Optical, Spectroscopic, and Infrared Remote Imaging System
- <sup>2</sup> Wide-Angle Camera
- 3 Narrow-Angle Camera

Numbers indicate combined totals for WAC and NAC



#### Lika Electronic Srl

Via S. Lorenzo 25 36010 Carrè (VI) • Italy Tel. +39 0445 806600

Fax +39 0445 806699

info@lika.it • www.lika.it













